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Abstract The paper considers the possibility of rotating a small moon by 180 degrees from a dynamic point of view 
using two rocket engines mounted on the surface of the moon. A thrust control law for the engines which allows to 
turn the moon over and then stabilize it relative to a new equilibrium position by parrying a gravity gradient torque is 
proposed. The dynamic aspects of such an experiment are discussed using the example of the Mars satellite Deimos. 
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I. Introduction 

It is difficult to imagine, but in the future, it is likely that a mission that requires the overturning of one of a small 

moon of the planets of the solar system [1-8] will be realized. The purpose of this paper is to show the possibility of 

a 180-degree rotation of a small moon from a mechanical point of view, and to propose this new problem of 

astrodynamics for discussion. The problem is studied in a planar formulation, when the small moon is acted upon only 

by a gravitational torque caused by the inequality of its main moments of inertia and by a control torque induced by 

two rocket engines installed on the surface of the moon. The paper discusses the dynamical aspects of such an 

experiment using the Deimos satellite of Mars as an example. The paper has the following structure. In Section 2, an 

equation is given for the planar attitude motion of a satellite (moon) under the action of the gravity gradient torque. 

Section 3 presents the control law of the rocket engines to perform the 180-degree rotation of the small moon and its 

further stabilization in the inverted position. Section 4 is devoted to the numerical simulation of the Deimos overturn. 

Finally, the conclusions are given in Section 5. 

II. Mathematical model 

Consider the plane motion of a moon in the gravitational field of a planet. A gravity gradient torque acting on the 

planet's moon is written as [9, p 370]  
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where   is the angle of rotation of the moon relative to the local vertical, n  is the mean orbital rate, ,A B  are the 

transverse moments of inertia and C  is the axial moment of inertia of the moon. For a circular orbit and in the plane 

case of the attitude motion, the equation is as follows 
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where   is the true anomaly. In the case of a circular orbit ( n const   ) for the new independent variable nt 

, equation (2) takes the form 
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   is the inertial parameter. The inertia tensor of most moons is not a diagonal matrix 

of equal elements, i.e. a scalar matrix. Their principal moments of inertia are usually not equal to each other and due 

to the choice of coordinate axes the following rule holds 
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Eq. (3) has four equilibria. Two of them are stable  
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and the other two are unstable  
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If condition (4) is satisfied for planet’s satellites, then there are two stable equilibrium positions (5). This results 

in the satellite's longitudinal axis Oz  being oriented along the line connecting the centers of mass of the planet and 

its satellite. In this case, the moon is always facing one side to the planet.  

III.  Turning control law 

This section is devoted to a rocket engine control law, which makes it possible to realize the turning of the small 

moon from one stable position (
1

0   ) to another (
2

  ) and its stabilization in the new stable position, i.e. to 

turn the previously invisible side of the moon towards the planet.  

Suppose that each of the two rocket engines installed at opposite points on the moon surface (Fig. 1) produces a 

thrust equal to 
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P  is thrust increment at the start of the turn, 0k   is control factor,   is the 

factor that ensures the initial swing of the moon over a period of one revolution of the moon around the planet 
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The first term in the control law Ошибка! Источник ссылки не найден. at ( , )
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gives the initial rotation of the moon from the initial stable position (
1

0  ). Taking into account the control (7), Eq. 

(3) is written as  
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where r  is the moon radius. 

 

Fig. 1 Planet and Moon. 

Note that Fig. 1 schematically depicts the moon in the shape of a sphere; in fact, no real moon has the shape of a 

sphere. It is important to interpret the radius of the moon in Eq. (9) correctly, it is actually the arm of the force P . 



IV.  Retrieval of the tether system into main spacecraft in low QSO 

The Martian satellite Deimos is taken as an example to verify the proposed control law (7). It is clear that Deimos 

is not such a small satellite, but it is chosen because the principal moments of inertia are known for it [1,2]. The 

physical parameters of Deimos are shown in Table 1 [2]. The overturn manoeuvre is simulated by numerically 

integrating Eq. (9) for the following parameters of the control law (7): 
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Table 1 Major physics parameters of Deimos 

Parameter Value Unit Description 
m  151.48 10  kg  mass 
r  6250 m  radius 
A  20.508mr  2kg m  moments of inertia 

B  20.461mr  2kg m   

C  20.338mr  2kg m   

 

Fig. 2 shows (a) the overturning and stabilization of the moon relative to the new equilibrium position (
2

  ) and 

(b) the control force required for this manoeuvre. 

 

  

(a) (b) 

Fig. 2. (a) The angle rotation of the moon relative to the local vertical  ; (b) The control force P . 

It should be noted that it would take about 600 Earth days to perform a 180-degree rotation of Deimos, and that 

the maximum thrust of an engine would have to be more than 20 million N. This is explained by the fact that Deimos 

has a large difference in the transverse moments of inertia  A C . 



V.Conclusions 

A new problem of astrodynamics is proposed for discussion, which may be widely discussed and realized in the 

future. Especially, it cannot be ruled out in the future that humanity will have a need to turn the moon reverse side in 

the Earth. Using the example of Deimos and a very simple control law, it is shown that the realization of its overturning 

requires large amounts of energy and time. If a moon has a small difference in transverse moments of inertia, then this 

problem would require less energy and time and might be easier to realize.  
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